

Regulatory Aspects of BFS Production inlcuding Environmental Monitoring

Presented by Dr. Martin Haerer

Regulatory Officer

BFS International Operator Organisation

Kunming March 21nd, 2018

Overview概要

- 1. Regulatory Aspects法规方面
- 1A. FDA/USP
- 1B. EG-GMP Guide指导
- 2. Environmental Controls环境控制
- 3. Comparison of sterility assurance between BFS- and traditional aseptic filling

BFS Technology is described in:

Europe:	EU-GMP Guide Annex 1, Chapter 26-27, since 1996
• USA:	FDA Guidance for Industry - Aseptic Processing 2004
	Appendix 2: Blow-Fill-Seal Technology
USP	<1116> Microbiological Control and Monitoring of
	Aseptic Processing Environment
China:	China GMP Annex 1 Chapter 16 BFS
• PDA	Technical Report No 77: The Manufacture of Sterile
• Japan:	Pharmaceutical Products Using Blow–Fill-Seal Technology Guidance for Industry - Sterile Drug Products
	Produced by Aseptic Processing 2005 Chapter 20.2 BFS
World Wide:	WHO good manufacturing practices for sterile pharmaceutical
	products
	WHO Technical Report Series, No. 961, 2011 Annex 6 Chapter 9
	BFS

Technical Report No. 77

The Manufacture of Sterile Pharmaceutical Products Using Blow-Fill-Seal Technology

Table of Contents

1.0	INT	RODUCTION 1
	1.1	Purpose
	1.2	Scope
	1.3	BFS Process Outline1
2.0	GLO	SSARY OF TERMS
	2.1	Abbreviations3
3.0	BFS	EQUIPMENT
	3.1	Shuttle Type Machines
		(Open Parison Process)
	3.2	Rotary Filling Machines (Closed Parison Process)4
		Additional Applications5
4.0		EFITS & SPECIAL CONSIDERATIONS OF BFS
		Senefits
		Special Considerations
	4.Z 5	pecial Considerations
5.0	DESI	GN 8
	51 P	Product Design
	5.1	
		Sterilization
	5.1	.2 Terminal Sterilization
	5.1	
	5.1	.4 Product Applications
	5.1	
	5.1	
		quipment Design10
	5.2	
	5.2	
	5.2	
	5.2	
	5.2	
	5.2	
		acility Design
	5.3	
	5.3	
6.0	OPER	ATIONAL AND QUALIFICATION SIDERATIONS
		BFS Process Validation and Advanced
		echnology
	6.2 E	valuating Critical BFS Process Parameters or Quality and Sterility14
	620	Duality Attribute Critical Process Parameters 15
	6.3	
	6.3	
	6.3	
		.4 Seal Mold Vacuum Delay Timer

C 4 C.	
	erility Assurance-related Critical Process rameters
6.4.1	
6.4.2	
6.4.3	
6.4.4	
6.4.5	
6.4.6	
	plementation
	e-process Preparation of Critical Areas 17
6.6.1	Sanitization of Machine Surfaces
6.6.2	
6.6.3	
	duct Validation
6.7.1	
6.7.2	
6.7.3	Campaign Fill/Holding Time
6.7.4	
6.8 Equ	uipment Validation
6.8.1	Critical Zone Control
6.8.2	
	Machines)
6.8.3	BFS Machine Room Environment
6.8.4	
6.8.5	
6.8.6	
6.8.7	Aseptic Compounding and Other Pre-BFS Product Sterilization Approaches
6.8.8	
	.8.1 BFS Shuttle Machines
	.8.2 BFS Rotary Machines
6.8.9	
6.8.1	0 Controls
	1 Downstream Process
	cess Simulation (Media Fill) for Aseptic
	ing Lines
6.9.1	Design
6.9.2	Interventions
6.10	Gowning24
6.11	Facility Validation24
7.0 QUALI	TY RISK ASSESSMENT
7.1 Pro	duct Contamination25
8.0 REFER	ENCES
	DIX I: EXAMPLE OF A QUALITY RISK
ASSES	SMENT 28
	NDIX II: ENVIRONMENTAL PARTICLE
	ORING LEVELS

- **1.** Regulatory Aspects法规方面
- Europe: 欧洲
- EU-GMP Guideline Annex 1, Chapter 26 / Valid from
- 01.03.2009欧盟GMP方针附件1,26章/2009年3月1日生效
- USA: 美国
- FDA Guidance for Industry Aseptic Processing
- Appendix 2: Blow-Fill-Seal Technology / 2004 2004USP专论
- USP Monograph chapter < 1116>FDA工业指导-无菌处理附件2: 吹瓶-灌装-封口三合一技术/

1A. EU-GMP Guide Annex 1 Manufacture of Sterile Medicinal Products (chapter 26/27) 欧盟GMP规则附件1 无菌医药产品的生产(章26/27)

Blow/Fill/Seal units are purpose built machines in which, in one continuous operation, Containers are formed...filled and then sealed.... Blow/Fill/Seal equipment used for aseptic production... is fitted with an effective grade A air shower....installed in at least a grade C environment, provided that grade A/B clothing is used...... Products which are terminally sterilised.... should be installed in a Grade D area. ... Environment should comply with the viable and non viable limits at rest and the viable limit only when in operation 吹-灌-封设备是容器成型,药液灌装,容器封口连续完成的全自动的专用设备。 用来无菌药品生产的设备带有百级层流罩,需安装至少C级环境区域里,使用 A/B级洁净衣服。产品须最终灭菌的,设备应放在D级环境区域里。环境应满足 静态和生产状态下繁殖度和非繁殖度限制要

1B. FDA

FDA Guideline Sterile Drug Products FDA无菌产品指导规范

Produced by Aseptic Processing — Current Good Manufacturing Practice由无菌 工艺生产---现行GMP规范

APPENDIX 2: BLOW-FILL- SEAL TECHNOLOGY

Blow-fill-seal (BFS) technology is an automated process by which containers are formed, filled, and sealed in a continuous operation. **This manufacturing technology includes economies in container closure processing and reduced human intervention** and is often used for filling and packaging ophthalmics, respiratory care products, and, less frequently, injectables...environment surrounding BFS machinery should....meet Class 100.000 (ISO 8)...Air in the critical area should meet Class 100 (ISO 5) microbiological standards

附件2: BFS吹瓶-灌装-封口三合一技术

BFS技术是指容器成型、灌装、封口在一台设备上连续完成的自动化工艺过程。它有容器的经济性生产,而且减少人为的干扰。它常用来生产包装眼药,呼吸护理产品。并有时用于生产注射类产品。BFS设备的环境要求满足10万级。重点区域的空气质量要求应满足微生物性百级标准

USA: USP < 1116>

MICROBIOLOGICAL CONTROL AND MONITORING OF ASEPTIC PROCESSING ENVIRONMENTS

ADVANCED ASEPTIC TECHNOLOGIES

- Advanced aseptic technologies can be defined as those that do not rely on the direct intervention of human operators during Processing.
- At present, technologies such as isolators, blow/fill/seal, and closed RABS (designs that are never opened during setup or operation) may be considered advanced aseptic technologies, provided that direct intervention by gowned personnel is disallowed during processing.

Overview Clean room limits (in operation) 洁净房间的总体要求(生产过程中)

US	ISO	EU 欧盟	≥ 0.5 µm Particles/m ³	Active air cfu/m ³ 实际空气Cfu/ 立方米	Settling plates in cfu/Plate 沉淀物盘	Contact plates in cfu/Plate 接触盘	Glove in cfu/plate 手套
100	5	А	EU at rest and operation (US) 3,520	US: 1 EU: <1	1 <1	<1	<1
10,000	7	В	At rest EU: 3,520 In operation EU/US: 352,000	US: 10 EU: 10	5 5	5	5
100,000	8	С	At rest EU: 352,000 In operation EU/US: 3,520,000	US: 100 EU: 100	50 50	25	
	9	D	Not defined 未定义	EU: 200	100	50	

Definition Annex 1 EG-GMP/FDA Guidance Sterile Drug Products produced by aseptic processing:

定义附件1欧盟GMP/FDA规则

无菌工艺生产的无菌医药药品

Clean room classification of BFS-installations:

三合一设备安装的洁净房间洁净度要求

无菌生产: Air shower: A/100

室内环境: C/100.000

Only for Annex 1 EU GMP

终端灭菌产品

without Air shower

室内环境: <u>D</u>(仅欧盟GMP规则定义)

- Microbiologicals and Particle limits must be fullfilled "at rest" for the clean rooms
- •必须满足静态下洁净房间的微生物和粒子数限制要求。

- Microbiologicals limits must be fullfilled also "at operation" Status (Particles limits are not valid)
- •必须满足运行状态下微生物数的限制要求

(粒子数限制要求是无效的)

Gowning for Blow/Fill/Seal Installation

三合一设备生产着装要求

<u>EU</u>

A/B clothingA/B衣服: Full suit, face mask, hood, boots, sterile gloves Sterile or sanitised suit No formal requirement for goggles No watches make up or jewellery 全身衣服, 面具, 帽子, 鞋靴, 无菌手套 无菌或消毒衣服, 护目镜无正式 要求

不佩戴手表、珠饰、不化妆

<u>US</u>

Aseptic, class 10,000:

Full suit, face mask, hood, goggles, boots/shoe over covers, gloves

Suit should be sterile

无菌,万级

全身衣服, 面具, 帽子, 护目镜,

靴子/鞋套,手套

衣服需无菌

Conclusion: Very similar requirements 结论:非常相似的要求

Qualification / Validation Aspects of BFS-Technology – What is different between FDA and EU?

EU-GMP ANNEX 1 CHAPTER 27: BLOW / FILL / SEAL TECHNOLOGY

- ... Because of this special technology particular attention should be paid to, at least the following:
- equipment design and qualification
- validation and reproducibility of cleaning-in-place and sterilization-in-place
- background clean room environment in which the equipment is located
- operator training and clothing, and
- interventions in the critical zone of the equipment including

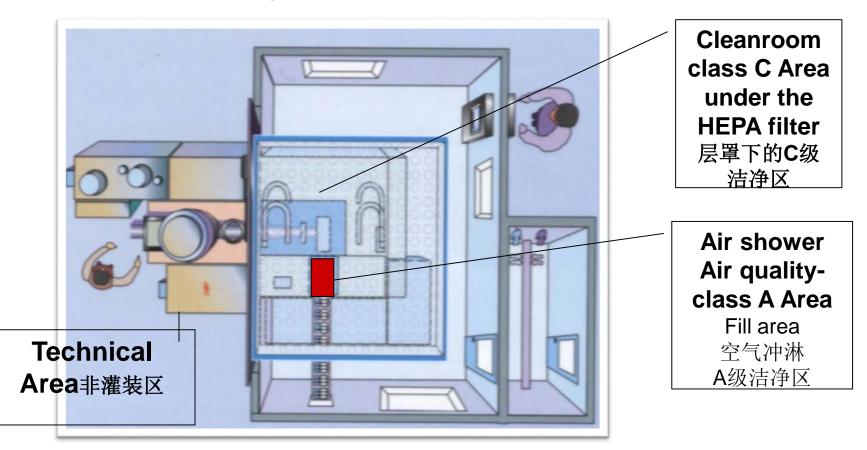
FDA Guidance for Industry "Sterile Drug Products Produced by Aseptic Processing" Annex 2 Chapter B:

Advantages of BFS processing are known to include rapid container closure processing and minimized aseptic interventions. However, only a properly functioning process can realize these advantages. We recommend affording special attention to setup, troubleshooting of equipment, and related aseptic personnel procedures. Equipment sterilization, media fills, polymer extrusion/sterilization, product-plastic compatibility, forming and sealing integrity, and unit weight variation are among the key issues to address in validation and qualification studies...

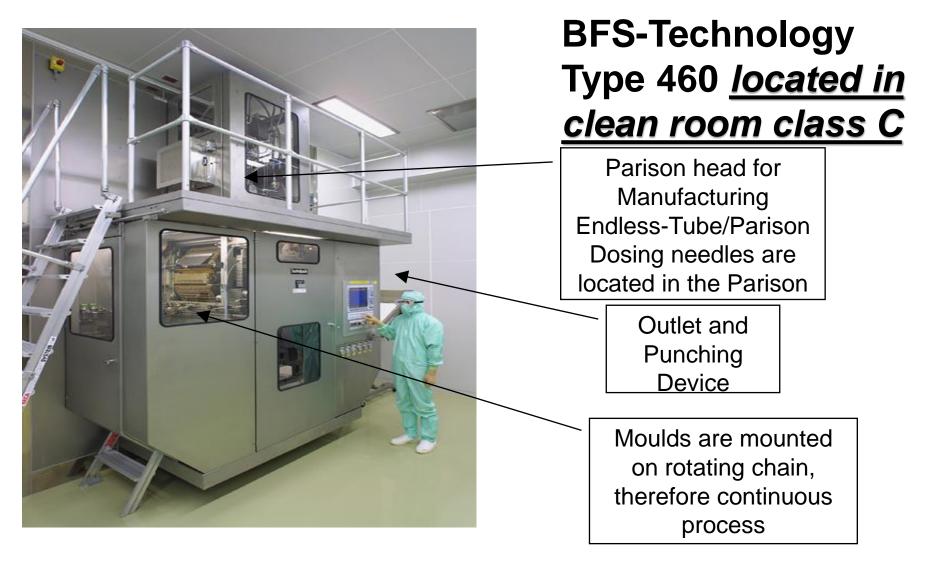
2. ENVIRONMENTAL CONTROLS 环境控制

Methods of "Monitoring":监测方法

- Measure of air velocity 空气速度的测量
- Measure of airborne contamination (active sampling)空气传播污染(实样采集)
- Sedimentation plates沉淀盘
- Contact plates for surfaces and personnel


用于表面和人员的接触盘

- Particle counting 颗粒计数



Clean room – Monitoring洁净室监测

Clean room concept for BFS-Systems: shuttling BFS系统洁净室概念

Overview Table: Example Clean room Monitoring

一览表: 洁净室监测举例

Location 位置	Method方法	Frequency频率	Limit要求
Air shower 空气冲淋 <u>Air quality A/</u> <u>100</u>	Air velocity风速	Batch related End of Production/ Weekly生产的最后一 批次/每周	To be defined/Over- pressure should be present需定义/必须是 过压
For shuttling machine only Rotary machines	Air borne microorganism (Sedimentation plate not possible)空气传播微生物 (不能用沉降盘)	Shiftwise/End of the batch每一批次 结尾的那班	< 1 cfu/cbm
<u>have no air</u> <u>shower</u> <u>class A!</u>	Particle counting (non viable) 颗粒计数 (不可繁殖颗粒)	Continuous/End of the Batch 连续/批次结束	max 3500/cbm in operation
	Contact/Swab plates接触/ 抹拭盘	End of Batch批次结束	< 1 cfu/25 cm ²

Overview Table: Example Clean room Monitoring

一览表: 洁净室监测举例

<u>Location</u> 位置	Method方法	Frequency频率	Limit要求
Cabin or under HEPA Filter C/100.000 箱柜或者位于HEPA过滤器 下面的C/100,000级关键区 域	Air velocity 空气流速	Monthly 每月	To be defined/Overpressure must be present to areas with lower/non clean room level (10 – 15 Pascal)需定义/必 须是过压 (10-15帕,非洁净室水平)
	Air borne micro- organism空气传 播微生物	Shiftwise/End of Batch每 一批次 结尾的那班	< 100 cfu/cbm active air sampling or 50 cfu/settling plate 90mm /4 hours < 100 cfu/立方米或者50cfu/90毫米盘 /4小时
	Non viable Particle-count颗 粒计数(不可繁 殖颗粒)	End of Batch 批次结束	No limits for operation EU- GMP/ 352.000/cbm at rest 动态无要求,静态要求3500每立方
Inner area Machine cover/Air shower outer surface设备内部/ 空气冲淋室外表面	Contact plates 接触盘	End of Batch 批次结束	To be defined 4 – 30 cfu/cm ² 需定义4-30cfu/cm ²

Overview Table: Example Clean room Monitoring

一览表: 洁净室监测举例

Location位置	Method方法	Frequency频率	Limit要求
Personnel Clean room C/100.000 人员 C级/100,000 洁净区	Contact plates / Gloves 接触盘/手套	After each Intervention in the critical area (C) under HEPA Filter including clean room monitoring 帘内关键区域的每一次干预 之后,包括洁净室监测	Max.: 10 cfu/25 cm ² 最大值: 10 cfu/25 cm ²
	Contact plates Overall 全面接触盘	After each Intervention in the critical area (C)under HEPA FIlter including clean room monitoring 帘内关键区域的每一次干预 之后,包括洁净室监测	Max 40 cfu/25 cm ² 最大值: 40 cfu/25 cm ²

2. Comparison of sterility assurance between BFS and traditional aseptic filling

Advanced Aseptic Processing Definition

"An advanced aseptic process is one in which direct intervention with open product containers or exposed product contact surfaces by operators wearing conventional cleanroom garments is not required and never permitted."

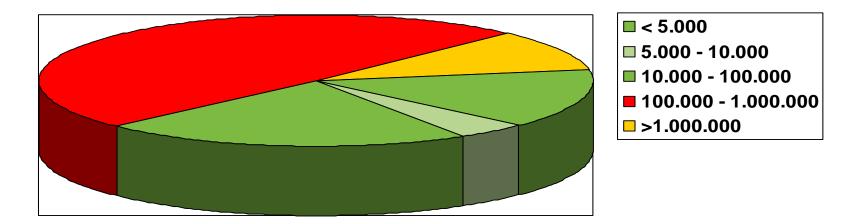
Agalloco, Akers & Madsen, "What is Advanced Aseptic

Processing?", Pharmaceutical Manufacturing, 2006.

3. Comparison of sterility assurance between BFS- and traditional aseptic filling

- Media-Fill as confirmation for the suitability of aseptic filling
- BFS Association Questionnaire 2003 in cooperation with PDA
- Questionnaire is comparable to PQRI Question., which was made after launch of FDA Draft " Guideline on Aseptic Processing"

3. Comparison of sterility assurance between BFS- and traditional aseptic filling


Table 1 Batchsize of Media Fills

	PQRI	BFS IOA
Amount of Media Fills	606	208
Amount of filled units/ Media Fill		
< 10.000	61%	42%
> 10.000	39%	38%
> 50.000	-	19%
> 100.000	-	1%

3. Comparison of sterility assurance between BFS- and traditional aseptic filling

Diagramm 1 Ansatzgröße der Chargen auf BFS-Anlagen

3.Comparison of sterility assurance between BFS- and traditional aseptic filling

Table 2 Contaminated Media Fills

		PQRI	BFS IOA
Amount of Media-fills		606	208
% contaminated Media-fills		55 = 9%	2 = 0,9%
Amount contaminated units			
	1	36 = 66%	2 = 100%
	2	3 = 6%	-
3 –	5	14 = 26%	-
>	5	1 = 2%	-

3.Comparison of sterility assurance between BFS- and traditional aseptic filling

Definition Amount contaminated units:

"An isolated incident (no trend) in which one contaminated unit beyond the 5.000 unit level may be considered a random event"

PQRI Aseptic Processing Work Group, Final Report March 2003

Contaminated Media Fills		
PQRI	34% with more than 1 contaminated Unit	
BFS IOA	0% with more than 1 contaminated Unit	

3. Comparison of sterility assurance between BFS- and traditional aseptic filling

Summary:

- No Interventions in class A/B areas for BFS Technology during production and at rest
- Equipment runs with a lot of Interventions out of the Clean room for Dark/White separated machines (Remote Control)
- Integrated SIP / CIP / DIP Processes for high security during equipment preparation
- Running of long filling times/big batches with BFS-Technology (up to one week is possible)
- Questionnaire shows shows low contamination rates 1/10 in comparison with conventionell aseptic filling lines (like Isolators)

Literature

1. European Commission, EU Guidelines to Good Manufacturing Practice. Annex 1, Manufacture of Sterile Medicinal Products (Brussels, Nov. 2008).

2.FDA, Guidance for Industry. Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice (Rockville, MD, Sept. 2004).

3.EMA, Guideline on Plastic Immediate Packaging Materials (London, UK, May 2005).

4.R. Oschmann, and O.E. Schubert, Eds, *Blow-Fill-Seal Technology*, (CRC Press, Stuttgart, 1999).

5.B. Ljungqvist et al., PDA J. Pharm. Sci. Technol. 60 (4), 254-258 (2006).

6.Jeff Price, Heat Transfer Analysis of BFS Process, Annual Meeting BFSIOA Boston Massachusetts 1998

7.Sundström, S., et al., European Journal of Parenteral & Pharmaceutical Sciences, Vol. 15, No. 3, pp. 87-92 (UK, 2010).

8.Sundström, S., et al., European Journal of Parenteral & Pharmaceutical Sciences, Vol. 15, No. 1, pp. 5-11 (UK, 2010).

9.Sundström, S., et al., PDA Journal of Pharmaceutical Sciences and Technology, Vol. 63, No. 1, pp. 71-80 (UK, 2010).

10. Martin Haerer and Urs Lichtenstein, European Journal of Parenteral Sciences, Vol. 2, No. 4, pp. 119-121 (UK, 1997).

11. Ljungqvist B., et al., PDA Journal of Pharmaceutical Sciences and Technology, Vol. 60, No. 4, pp. 254-258 (UK, 2006).

12. Trevor Deeks, Pharmaceutical Technology Europe, No: 0384 (UK, 1999)

13.Wei Liu et al. BioPharma International Vol 24,(7), July 2011, pp 22-30

14. Steven J. Shire in Rodney Pearlman, Y. John Wang (eds) Formulation, Characterization and stability of protein drugs Vol 9: Case Histories, pp 393-422, Kluwer Academic Publishers, 2002

15.Otto E. Schubert, personal Communication Feb, 8, 2014

Thank you very
much for your
Attendance!非常感谢您的参与!

bottelpack[®] . 2018-03-13 · 31